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Abstract 

Null Einstein-Maxwell charge-free fields such that the propagation vector is a scalar 
multiple of a gradient are not determined uniquely by the geometry of the space-time. 
The metric for space-times admitting such exceptional fields can always be transformed 
to the Wyman-Trollope form. This same result follows if there is a non-vanishing null 
current density associated with the field. 

1. Introduction 

The Rainich-Misner-Wheeler (1925, 1957) conditions such that a 
space-time admits an electromagnetic field with zero charge and current 
density are 

R~ ~ = 0, R~/3 V ~' V/3 < 0 

R,4 Re, = �88 R~) 3~ ~, 0.;~ = 0r;. 

where V ~ is any arbitrary time-like vector and 

O u = i( R,~ Rr~l) -2 ~/(g). e~p~: RPa R ay;e 

0 being the complexion of the electromagnetic field, and %=0e is the usual 
antisymmetric permutation tensor, having the value +1 if Ix, ~, p, y is an 
even permutation of 0, 1, 2, 3, and - 1  if odd. These conditions have been 
extended to the case of  a non-zero massless current distribution (Goodinson 
& Newing, 1968). In both cases, the conditions are found to break down 
when the field is null, since R,,[~R~r is then zero. Several authors have 
considered vacuum null fields, and such fields are found to be determined 
uniquely by the metric of  the space-time, except in the special case when 
the propagation vector of  the null electromagnetic field L,, satisfies 

E~Y~ L~;~L~ = 0 (1.1) 
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and is therefore expressible as a scalar multiple of a gradient. When (1.1) 
is satisfied, Peres's (196t) exceptional case occurs, and Geroch (1966) has 
discussed the form of the metric for the class of  space-times when this is 
so, i.e. the case for which the metric does not determine the electromagnetic 
field uniquely. He suggested that a coordinate system existed for which 
the metric had the standard form, 

ds 2 = ~ d x  12 + 2dx~ dx I + 2 d x l ( f l d x  2 + ~,dx 3) - (dx  22 + ,ix 3') 

where c,, fl, ), are independent of  x ~ Space-times for which the propagation 
vector L~ is equal to a scalar multiple of a gradient have been discussed by 
Wyman & Trollope (1965), who obtained 

ds 2 = ~dx l" + 2dx~ dx I + 2dxl( f ldx 2 + 7,dx ~) - k(dx 2~ + dx 3~) 

as the standard form for the metric. A particular case of  a general solution 
obtained by Wyman & Trollope (1965) is 

x o 
ds2 = 2oq dxl2 + 2 dxl (dxO _ ; dx2) 1 2 2 - (dx 

where e~ = 2x 2~. 
It does not appear to be possible to convert this latter metric into the 

Geroch form and therefore it seems worthwhile to investigate the general 
form of  metrics when Peres's exceptional case occurs. 

Also it will be shown that the metric for any space-time admitting a null 
field with a null current can be expressed in the Wyman-Trollope form. 

2. Electromagnetic Equations in Terms of a Null Tetrad 

Let L~ be the propagationvector of a null electromagnetic field. In the 
absence of matter and with suitable units, the Ricci tensor of the space-time 
may be expressed as, 

.R~ ~ = -L~ L o 

The identity R~;~ = 0 implies that (L~L~):~ = 0, and a vector L ~ satisfying 
this relation also satisfies 

Lt~ L/3] = 0 (2.1) 

where L~ = LYL~,  (cf. Robinson, 1961). 
Three other null vectors M% ~t~-, N ~ can be constructed which, together 

with L% form a null tetrad. It has been shown (Goodinson & Newing, 
1969) that the current vector J~ can be expressed as 

j ~ = J L  ~ + X M  ~ + ~ t  ~ (2.2) 

where J and X are quantities expressible in terms of the tetrad vectors. 
I f J J  ~ = 0, the current is null, and in this case X = 0, i.e. 

?d~" M~L~;~ = O. (2.3) 
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If  (2.1) and (2.3) are satisfied, then L ~ defines a shear-free family of geodesics 
(Robinson, 1961 ; Mariot, 1954; Sachs, 1961; Szekeres, 1966), and therefore 
L ~ can be taken to be L ~ = A(dx~'/dv), v being some parameter along the 
geodesic. Introducing a coordinate system in which the parameter v is 
taken to be the coordinate x ~ L ~ = A~0 ~, and since L ~ is a null vector it 
follows that g00 = 0 in this coordinate system. The metric tensor of the 
space-time is given in terms of the tetrad by 

g ~  = 2L(~ iV#) - 2M(~ 21r (2.4) 
and now has the form 

The self-dual tensor uS~=2Lt~M#l  can be constructed, and taking 
co ~ = exp(i0)e5 ~ to be the sum of the electromagnetic field tensor and 
its complex dual, Maxwell's equations for the electromagnetic field are 
(Goodinson & Newing, 1968) 

[exp (iO) &~#];~ = J~ 

0 being a complexion parameter of the null field and J~ the current-density 
vector. 

3. The Exceptional Case 

Using the properties of the tetrad vectors as given in Goodinson & Newing 
(1969), it can be shown that if (L~L~);~ = 0, then 

�89 c~#~'~ L~ LT; ~ = �89 ~ 1~I ~ M~'(Le; ~ - L~;~) 

and so the condition 
e~#~LgL~,;a = 0 (3.1) (Geroch condition) 

implies that 
~ Me(Ly;~ - L~;~,) = 0 (3.2) (Peres condition) 

and both conditions imply that L~ is a scalar multiple of a gradient, 
L~ =~U~. 

The possibility of setting up a standard form for the metric in the case 
of a charge-free null field whose propagation vector is a scalar multiple 
of a gradient was noticed by Geroch (1966). Wyman & Trollope (1965) 
discovered a metric of similar type. This method can also be used for the 
case of a non-zero charge-current distribution. With signature - 2  and 
coordinates x ~ x ~, x 2, x 3 the Wyman-Trollope metric is 

1 ~ # 
g~ = # - k  

~' 0 - 



432 P. A. GOODINSON AND R. A. NEWING 

The vacuum electromagnetic equations are automatically satisfied and the 
coefficients ~, t ,  7, k are to be chosen to satisfy the gravitational field 
equations, Ruv =-L~,Lv.  Geroch 's  metric is the special case in which ~, 
/3 and 7 are independent  o f  x ~ and k = 1. IfL~, = ~U,~, then U0 = 0, since 
L~L ~' = 0, and a coordinate  system may be chosen in which U = x 1. In this 
case, L~ may be expressed in the form L~, = ,~hS~, ~, and since L ~' = ~80", it 
follows that  g0u = hSu ~ and g~t, = h-J 80 ~. The metric tensor and its reciprocal 
are therefore of  the form I0 

X X X X O 0 
g ~ =  0 X X ' g ~ =  0 X 

0 X X 0 X 

The condit ion L~,M ~ = 0 implies that  M ~ = 0, and by a suitable ~b-trans- 
format ion  (Peres, 1961) M ~ can be taken to be zero. M ~ may then be 
expressed as 

M ~ = a[~2 ~ + p exp (i7/) 83 ~] 

where p and 7/are real, and by a ~- t ransformation (Peres, 1961) a can also 
be taken to be real. 

Since the contravariant  tensor g ~  may be expressed in terms o f  the 
tetrad in the form 

g ~  = L~' N ~ + L~ N ~ - MO' l~I ~ - IQ~ M~ 

the 2 • 2 submatrix g"", m, n = 2, 3 is 

gmn = _2a  2 g,mn 

where 
g,m, = [ 1 p COS 7/] 

p cos r/ p2 j 

and the determinant  g o f  the covariant  tensor g~ r is g = -h2(4a4p 2 sin 2 7/)-1. 
The  electromagnetic field equations [eS~'/3exp(i0)];~ = J ~ ,  or  equivalently 
{ ( U , M # - L # M ~ ) e x p ( i O ) v ' - g } , ~ = J % / - g ,  where J~ is real, lead to 

{aA,v'(-g). exp (iO) 80~[82/s + p33/3 exp (i7/)]},/s 

- -  {aA,v/(-g).exp(iO) [32 ~ + p33~exp(iT/)]}.0 = a / ( -g ) . J  ~' (3.3) 

F rom equation (2.2), since J~ is propor t ional  to L ~, it follows that  

{aAv'(-g).  exp (iO) [82 ~ + p33 ~ exp (i~7)]},o = 0 

and hence p and 7/are both  independent  of  x ~ 
The 2 >< 2 submatrix g,.. ofg~/3 can be shown to be 

gmn = --( 2a2 p2 sin 2 7/)-I g'mn 

g',nn=[_pPc;s~ --P l~ 7/]" 
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Since g'~,. is independent of x ~ it is possible to choose a coordinate trans- 
formation 

X0 = ~0, XI = ~1, X 2 = f ( ~ l , ~ 2  ~3) 

X3 = g( .~l  )~2 23) 

which converts g=/3 into the form 

h e 
g~/3 = 3 

Y 

3 
- k  

0 - 

(3.4) 

and by a further suitable transformation of coordinates, h can be taken to 
be unity. 

The determinant g is then given by g = - k  z and g~/3 has the form 

1 311  rlk ] 
0 0 0 

g~/3= f l /k  0 - k  -~ 0 

Lrl  o o - -k  - l  

where 
2 

The tetrad vectors may then be taken to be 

Le = h3~ 1, L ~ = ),80 ~ 

1 
M~ ~r - iy) 8~' - k(8~ 2 - i8~3)} 

1 
M ~ - 82 - i83 ~) 

a/(2k 

P 

N ~ = (~k) -1 {�89 ~ + k81 ~ + 38z ~ + y83 ~} 

the signs of the imaginary terms in M= and M = being chosen to ensure 
that L t = M  ~1 is equal to its complex dual. 

With the space-time defined by (3.4) 

~ )lexp (iO) 
~/(2k) {(X + i0),2 --  i ( x  + i0),3} 8o ~ = S~ 

where X = log (2ta/k). 
The condition that J= be real may be satisfied by taking 

cos 0 = exp (-X) F,2, sin 0 = e x p ( - x ) F 3  
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where F is a function of x 1, x 2, x 3 subject to the condition ( F 2 )  2 -~- ( F 3 )  2 = 

�9 ~2k, the current being given by the null vector 

1 
J~ V,(2).k(F,= + F,33)a0 ~ 

The parameters ~, fi, Y, k defining the space-time, and the electro- 
magnetic parameter A, must be such that the gravitational field equations 
are satisfied 

R~/3 = -L~ L/3 = -A 2 a l 331 

A theorem may now be stated: The metric for any space-time admitting a 
null field with a null current can be expressed in the Wyman-Trollope form. 

It may be noticed that in the case of zero charge-current, Wyman-  
Trollope's results follow with A~/k = 1, and Geroch's results with k = 1. 
In these cases, the electromagnetic field equations are satisfied by taking 
0 and X to be independent of x 2 and x 3. Geroch's restriction that ~, fl, y 
be independent of x ~ appears to be unnecessary, and arises from the 
assumption (Geroch, 1966, p. 173) that the vanishing of the trace of the 
square matrix D implies that D itself is zero; this is the case only if the 
matrix D is symmetric. 

4. The Vaidya Radiating Mass Particle 

As an example of the above theory, the substitutions e = 1 - (2m/x~ 
k = x ~  2, f l  = 0 = ,y are such that the only non-vanishing component 
of R~/3 is Rll = 2ml/x ~ where m = rn(x l) and rnl = dm/dx 1. These sub- 
stitutions have a physical interpretation (Goodinson, 1969) if one makes 
the further transformations x ~  x 1= u, t a n h x 2 - c o s 0 ,  x 3 =~b. The 
metric g~/3 of the space-time is then such that the line-element becomes 

dsZ = ( 1 -  ~ ) d u 2  + 2dudr-r2(dO2+sin2Od(a2) 

which represents the Vaidya (1947) spherically symmetric radiation field. 
In the coordinate system xU = (xO, x l , x  2, x s) the function F defined in 

Section 3 is such that 
F 2  z -{-F,3  2 = -2ml seth2 x 2 (4.1) 

and the current-density vector JV is given by 

c o s h  2 X 2 
JU (F,22 + F,33) 8o" (4.2) 

C(2). (x~ ~ 

In the coordinate system x~ = (r, u, 0, q~) equation (4.1) becomes 
F,0 2 + F+  2 cosec z 0 = -2ml = a function independent of 0 and q~ (4.3) 

and equation (4.2) gives 

j ~ , -  sinO~o slnO-o~ +-~-r (4.4) 
~/(2). r 2" sin E 0 
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Writing F = ( -2ml )  1/2 A(O, •), equation (4.3) becomes 

A,o 2 + A,~ 2 cosec 2 0 = 1 (4.5) 
and J"  is given by 

J b  t _ ( - - m l )  I/2 V2 A ~ o  bt 
r 2 

Equation (4.5) may be written as [VAI E = 1, and it follows that JV # 0. 
Vaidya (1947) chose A=cos- l{s in0s in$} as a solution of equation 

(4.5), and the current-density vector is then proportional to cotA. 
It is of interest to note that the simple solution of (4.5), i.e. A = 0, 

represents the same physical situation as the Vaidya solution, if one just 
makes an interchange of the y- and z-axes of the coordinate system. 

It would appear that a general solution of (4.5) can be expressed in the 
form A = cos-l{fi.~}, where the unit vector fi defines a fixed direction and 
r [  is the position vector, i.e. A is the inclination of r to some fixed line 
in space. 
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